Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size.

نویسندگان

  • G Kong
  • R D Braun
  • M W Dewhirst
چکیده

The efficacy of novel cancer therapeutics has been hampered by the ability to deliver these agents to the tumor at effective concentrations. Liposomes have been used as a method to overcome some delivery issues and, in combination with hyperthermia, have been shown to increase drug delivery to tumors. Particle size has been shown to affect the delivery of liposomes, but it is not known how hyperthermia affects size dependence. This study investigates the effect of hyperthermia (42 degrees C) on the extravasation of different sized nanoparticles (albumin; 100-, 200-, and 400-nm liposomes) from tumor microvasculature in a human tumor (SKOV-3 ovarian carcinoma) xenograft grown in mouse window chambers. In this model (at 34 degrees C), no liposomes were able to extravasate into the tumor interstitium. Hyperthermia enabled liposome extravasation of all sizes. The magnitude of hyperthermia-induced extravasation was inversely proportional to particle size. Thus, at normothermia (34 degrees C), the pore cutoff size for this model was between 7 and 100 nm (e.g., liposomes did not extravasate). At 42 degrees C, the pore cutoff size was increased to >400 nm, allowing all nanoparticles tested to be delivered to the tumor interstitium to some degree. With hyperthermia, the 100-nm liposome experienced the largest relative increase in extravasation from tumor vasculature. Hyperthermia did not enable extravasation of 100-nm liposomes from normal vasculature, potentially allowing for tumor-specific delivery. These experiments indicate that hyperthermia can enable and augment liposomal drug delivery to tumors and potentially help target liposomes specifically to tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

Optimization of Iron Oxide Nanoparticle Preparation for Biomedical Applications by Using Box-Behenken Design

Magnetic nanoparticles can bind to different drug delivery systems and can be used for drug targeting to a specific organ by using an external magnetic field as well as used in hyperthermia by heating in alternating magnetic fields. The characteristics of iron oxide nanoparticles are significantly affected by particle size, shape and zeta potential, among which the particle size plays the most ...

متن کامل

Extravasation from Tumor Vasculature Characterization of the Effect of Hyperthermia on Nanoparticle

The efficacy of novel cancer therapeutics can be hampered by inefficient delivery of agents to the tumor at effective concentrations. Liposomes have been used as a method to overcome some delivery issues and, in combination with hyperthermia, have been shown to increase drug delivery to tumors. This study investigates the effects of a range of temperatures (34–42°C) and hyperthermia treatment s...

متن کامل

Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature.

The efficacy of novel cancer therapeutics can be hampered by inefficient delivery of agents to the tumor at effective concentrations. Liposomes have been used as a method to overcome some delivery issues and, in combination with hyperthermia, have been shown to increase drug delivery to tumors. This study investigates the effects of a range of temperatures (34-42 degrees C) and hyperthermia tre...

متن کامل

Gold Nanoparticle Delivery of Modified CpG Stimulates Macrophages and Inhibits Tumor Growth for Enhanced Immunotherapy

Gold nanoparticle accumulation in immune cells has commonly been viewed as a side effect for cancer therapeutic delivery; however, this phenomenon can be utilized for developing gold nanoparticle mediated immunotherapy. Here, we conjugated a modified CpG oligodeoxynucleotide immune stimulant to gold nanoparticles using a simple and scalable self-assembled monolayer scheme that enhanced the func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 60 16  شماره 

صفحات  -

تاریخ انتشار 2000